

FIG. 1. The phonon spectrum $\alpha^2(\omega) F(\omega)$ of Pb at P=0 (black line) and P=3445 bar (dashed line).

Fig. 2. Real part, Δ_1 , and imaginary part, Δ_2 , of the gap function of Pb. P=0, black lines, P=3445 bar, dashed lines.

In Fig. 2 we give the complex gap function $\Delta(\omega) = \Delta_1(\omega) + i\Delta_2(\omega)$ as function of energy and pressure. The phonon emission resonances are shifted to higher energies and somewhat reduced under pressure, indicating a move towards weaker coupling.

The Coulomb pseudo-potential, U_c , obtained from the inversion program is 0.12 at P=0 and 0.14 at P=3445 bar. This result is in good agreement with McMillan and Rowells' result, and also with the theoretical estimate of $U_c\simeq 0.11$. It should be stated, however, that

is obta with moder dependence seriously.

The fo from $\alpha^2(\omega)$

- (i) the average $\langle \alpha^2 \rangle$
- (ii) the e defin
- (iii) the r
- (iv) an a intro

< w2> =

The resu

P (bar)

0 3445

The quantitie dln dln dln

We esti

Th

<a² > is
averag
heavil
da²/d:
Scalag
to hud
explai
In spi